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Programmed death is often associated with a bacterial stress response. This behavior appears
paradoxical, as it offers no benefit to the individual. This paradox can be explained if the death is
‘altruistic’: the killing of some cells can benefit the survivors through release of ‘public goods’.
However, the conditions where bacterial programmed death becomes advantageous have not been
unambiguously demonstrated experimentally. Here, we determined such conditions by engineering
tunable, stress-induced altruistic death in the bacterium Escherichia coli. Using a mathematical
model, we predicted the existence of an optimal programmed death rate that maximizes population
growth under stress. We further predicted that altruistic death could generate the ‘Eagle effect’, a
counter-intuitive phenomenon where bacteria appear to grow better when treated with higher
antibiotic concentrations. In support of these modeling insights, we experimentally demonstrated
both the optimality in programmed death rate and the Eagle effect using our engineered system. Our
findings fill a critical conceptual gap in the analysis of the evolution of bacterial programmed death,
and have implications for a design of antibiotic treatment.
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Introduction

Programmed death is commonly associated with bacterial
response to stressful conditions, such as amino-acid starvation
(Aizenman et al, 1996), presence of competitors (Ackermann
et al, 2008), and antibiotic treatment (Rice and Bayles, 2003;
Hazan et al, 2004). As death offers no benefit to its actor (i.e., a
bacterial cell that has activated programmed death will die), its
occurrence raises a fundamental, unresolved question with
regard to its evolution: how can this trait be selected for?
An oft-cited explanation is that the death is ‘altruistic’: the
killing of some cells can provide direct or indirect benefits to
the survivors, including the actor’s kin, through the release of
‘public goods’ (Figure 1A) (West et al, 2007). In other words,
death may represent an extreme form of cooperation,
analogous to sterile workers in social-insect colonies who
give up their personal reproduction but benefit their fertile
family members (Gardner and Kiimmerli, 2008). By making
this assumption, evolution of programmed death in microbes
can be analyzed under the general framework of public-good
cooperation (Ackermann et al, 2008). Figure 1A summarizes
several natural examples that may fit in this framework:
Streptococcus pneumoniae (Berry et al, 1989; Hirst et al, 2004)
responds to its host environment and releases the virulence
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factor pneumolysin through cell lysis, which helps its host
invasion. Salmonella typhimurim (Stecher et al, 2007;
Ackermann et al, 2008) responds to competition in the host’s
microbiota by causing host inflammation through pro-
grammed death. This inflammation kills the microbiota and
reduces competition. E. coli (Aizenman et al, 1996) responds
to amino-acid starvation by triggering programmed death,
which is speculated to help surviving cells by providing
nutrients. Colicinogenic E. coli responds to DNA-damaging
agent and nutrient depletion by releasing colicin through cell
lysis, which kills neighboring competitors (Gardner et al, 2004;
Cascales et al, 2007). In response to nutrient limitation,
Bacillus subtilis develops spores, an extreme means to with-
stand the stress. B. subtilis delays the sporulation by killing
and feeding on their non-sporulating siblings to prevent
unnecessary spore formation in case the environmental
condition improves shortly (Ellermeier et al, 2006). Other
examples of possible public goods resulting from programmed
death include extracellular DNA, a structural component
of biofilm in Pseudomonas aeruginosa (Allesen-Holm et al,
2006), Staphylococcus aureus (Rice et al, 2007), and
Streptococcus mutants.

While plausible, however, the conditions where altruistic
death becomes advantageous have not been unequivocally
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Figure 1

Altruistic bacterial death in response to stress. (A) Coupling programmed death with public-good production. Some cells undergo programmed death in

response to stress (red triangles), leading to generation of a public good (green ovals). The public good removes the stress, allowing survival and recovery of the overall
population. Table: examples of natural systems where programmed bacterial death has been proposed to be altruistic by providing direct or indirect benefits to survivors.
See text for further details. (B) A synthetic gene circuit to program altruistic death. 6-APA causes murein breakdown and generates aMur-Tp inside the cell; aMur-Tp
induces expression of the E gene by activating the Pm,c promoter through AmpR. A non-secreted form of beta-lactamase (BlaM) is placed under IPTG-inducible
promoter, P a¢/2ra-1- Upon cell lysis owing to E expression, BlaM is released to the extracellular space where it degrades 6-APA. In the conceptual framework described in

(A), 6-APA represents the stress, whereas BlaM represents the public good.

demonstrated in an experimental system. As such, there
remains a considerable gap between theoretical models and
corresponding experimental validation. For example, a recent
study of S. typhimurim used an evolutionary game theory
approach to investigate conditions under which evolution
of altruistic death is possible (Ackermann et al, 2008). It
demonstrated that basic assumptions of the altruistic-death
model are consistent with experiments, but the exact nature of
cost-benefit relationship of death remains elusive. A major
challenge in tackling this problem is the complexity of natural
biological processes, where confounding factors could obscure
the quantitative analysis and interpretation of the outcome
resulting from the trade-off between death and public-good
production. These include the severity of initial stress, degree
of death, per-cell rate of public-good generation, as well as the
growth cycle of the organism. Often times, precise manipula-
tion and even interpretation of basic parameters are nearly
impossible. For instance, during S. typhimurium infection, the
benefit results from a combination of highly intertwined,
host-pathogen-microflora interactions (Stecher et al, 2007;
Ackermann et al, 2008) while the system responsible for
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suicide (type-IIl secretion system) have multiple roles in
pathogenesis (Haraga et al, 2008). Modifying one factor likely
has diverse and unintended effects; thus the experimental
results are open to alternative explanations (Nedelcu et al,
2011).

Owing to these issues, it remains an open question with
regard to the specific conditions under which programmed
death can pay off at the population level. To address this
question, we have taken a synthetic-biology approach
to explicitly measure and test the adaptive advantage of
programmed bacterial death through the release of public
goods. We created synthetic gene circuits in E. coli that respond
to environmental stress by exhibiting varying extent of
programmed death that releases a public good (Figure 1B).
In our circuits, both the degree of programmed death and the
rate of public-good production are tunable, which allows us to
test the benefits of altruistic death under various conditions in
a controllable manner.

Such synthetic systems are often simpler than their natural
counterparts, have fewer confounding factors, are amenable to
modulation of system parameters, and allow clear mapping
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between experimental manipulation and its effect (Tanouchi
et al, 2009). This approach has been successfully adopted to
investigate other problems of population and evolutionary
biology, and is complementary to directly studying natural
systems (Kerr et al, 2002; Shou et al, 2007; Acar et al, 2008;
Chuang et al, 2009, 2010; Song et al, 2009). For instance,
Chuang et al (2009) created a secretion-based cooperation
system in E. coli where ‘producers’ secrete a public good at the
cost of reduced growth rate whereas ‘non-producers’ benefit
from the public good without paying the cost. Using this
system, the authors studied how population structure, cost of
being the producer, and degree of benefit affect the outcome of
competition between the two strains (Chuang et al, 2009).
In this study, we have used a similar approach to address an
unresolved, more complex biological phenomenon, namely
altruistic death where cells completely give up their reproduc-
tive opportunity upon public-good production.

Using our synthetic system, we examined whether altruistic
death can promote population fitness, and elucidated how this
fitness depends on intrinsic (e.g., production rate of the public
good and the programmed death rate) and extrinsic (e.g., the
stress level, duration, and cell density at which the stress is
applied) factors. Our approach also revealed a mechanistic
explanation for the ‘Eagle effect’, a counter-intuitive phenom-
enon where bacteria appear to grow better when treated with
higher antibiotic concentrations. This result provides a novel
insight that connects two apparently unrelated phenomena,
altruistic death and the Eagle effect. Overall, our results fill a
conceptual gap in understanding the evolutionary dynamics of
programmed bacterial death during stress and have implica-
tions for designing intervention strategies for effective treat-
ment of bacterial infections.

Results

Circuit design, implementation, and parts
characterization

Our base circuit, termed PAD (programmed altruistic death),
consists of a suicide module and a public-good module
(Figure 1B). The suicide module expresses the E lysis gene
from bacteriophage ¢X174 under Pg,,c promoter in response
to a beta-lactam antibiotic, 6-APA. 6-APA causes partial cell-
wall breakdown and accumulation of a cell-wall intermediate,
anhMurNAc-tripeptide, which binds and activates AmpR, a
transcriptional regulator of Pg,pc promoter (Jacobs et al,
1997). The public-good module expresses a modified,
cytoplasmic form of beta-lactamase (BlaM) from an IPTG-
inducible promoter, Pj4c/arq-; (Lutz and Bujard, 1997). Having
suicide function and public-good production in separate
modules allows their independent modulation to examine
their effects on system dynamics. That is, the BlaM production
rate per cell can be modulated without the influence of the E
protein production rate. Likewise, the death rate can be
modulated by changing the translation rate of the E protein, for
a given public-good production rate and stress level. Impor-
tantly, these changes can be mapped to separate parameters in
our mathematical model (see below) in an unambiguous
manner. As a control, we used a cell strain that is identical to
PAD except that it lacks the E gene (no programmed death, or
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NPD). Microscope analysis confirmed significantly greater
cell lysis for PAD in comparison with NPD (Supplementary
Figure S1). It also suggested a minor growth inhibition effect of
E protein for low E gene induction (i.e., low 6-APA concentra-
tion; Supplementary Figure S1d, e).

We chose BlaM for its two properties that are critical for the
designed circuit function. First, because 6-APA recognizes
its targets (penicillin-binding proteins) in the periplasm, a
cytoplasmic BlaM should not protect cells against 6-APA
(Broome-Smith and Spratt, 1986; Everett et al, 1990). We
confirmed this idea experimentally by using a reporter circuit
(pCSaGFP), where 6-APA-induced cell-wall damage is reported
by GFP expression (Figure 2A). Our results showed that BlaM
expression did not reduce the damage response in comparison
with the negative control (without BlaM induction), indicating
lack of 6-APA degradation. In contrast, the native, periplasmic
form of beta-lactamase, Bla, reduced the damage response in
comparision with the negative control (without Bla induc-
tion), indicating its ability to degrade 6-APA. Second, when
released to extracellular space by cell lysis, BlaM should
degrade 6-APA and offer protection for surviving cells.
We tested this idea by using a protection assay (Figure 2B).
Supernatant from lysed, BlaM-expressing cells offered full
protection for a sensitive strain against 6-APA treatment. In
contrast, supernatant from cells expressing BlaM but not lysed
or that from lysed cells not expressing BlaM did not offer
protection.

Therefore, the programmed death is completely altruistic by
design in our circuits: the pubic good (BlaM) can only realize
its protective function through the killing of its host cell. Also
implied in this design is the requirement for cell-cell
variability in death, which could arise from stochastic E
protein expression or variable sensitivity to E-protein-
mediated killing. We note that the first aspect is evident in
the GFP expression from the P,;,,pc promoter in cells carrying a
reporter circuit; the main peak of the GFP expression shows a
broad distribution, covering about 50-fold range (Figure 2A).

Advantage of PAD at the population level

To test the advantage of altruistic death, we first compared
growth dynamics of PAD and NPD in response to antibiotic
treatment (Figure 3A). Altruistic death is defined to be
advantageous when the PAD population outgrows the NPD
population. Addition of 400 pg/ml 6-APA caused drastic lysis
in the PAD strain but only slight lysis in the NPD strain. The
density of the PAD strain remained lower than that of the NPD
strain until ~18h later when it started to grow faster and
eventually reached a higher density than the NPD strain.
This growth advantage was due to faster release of BlaM and
thus faster degradation of 6-APA (Figure 2B). This result
provides a direct experimental demonstration that altruistic
death can indeed benefit overall population survival in clonal
populations, a minimum requirement for the evolution of
altruistic death. The situation, however, is expected to reverse
when the two strains are grown in a mixture. Social evolution
theory predicts that a public-good producer (e.g., PAD)
decreases in frequency when cocultured with a strain with
no or less public-good production (e.g., NPD). Using
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Figure2 Characterization of the public-good module. (A) Cytoplasmic BlaM provides negligible protection against 6-APA. P ,,,,¢ induction upon 6-APA treatment was
measured using GFP in relative fluorescence unit (RFU) in the presence of BlaM or Bla expression. BlaM expression (blue, induced by 1 mM IPTG) did not reduce GFP
expression in comparison with negative control (green, no induction by IPTG), indicating that BlaM did not prevent cell-wall damage by 6-APA. In contrast, expression of
the native Bla (blue, induced by 1 mM IPTG) reduced GFP expression in comparison with the negative control (green, no induction by IPTG). In the absence of 6-APA,
GFP was not induced for either circuit, with (black) or without (red) 1 mM IPTG. (B) Released BlaM by cell lysis provides protection against 6-APA. Left: growth of a
6-APA-sensitive strain (lacking E gene and BlaM) was assayed in conditioned media containing supernatants prepared from PAD cultures with or without BlaM induction
by 1 mM IPTG, and with (lysis) or without (no lysis) 6-APA treatment (400 pg/ml). Right: no lysis, no 6-APA (negative control): growth of the sensitive strain in the absence
of 6-APA and in supernatants from unlysed PAD cultures. No lysis, + 6-APA: growth of the sensitive strain in superatants from unlysed PAD cultures with 400 pg/ml
6-APA. Lysis, + 6-APA: growth of the sensitive strain in supernatants from PAD cultures lysed by 400 ug/ml 6-APA (i.e., 6-APA is present in the supernatants). Only
supernatant from lysed PAD cells expressing BlaM provided significant protection for the sensitive strain against the 6-APA treatment. Error bars are s.d. of six replicates
(three technical replicates x two independent experiments) for the growth assay.

fluorescence-tagged versions of PAD and NPD, we confirmed
this prediction in our synthetic system (Supplementary Figure
S2), thus reinforcing the idea that BlaM release by E-mediated
cell lysis is altruistic and that BlaM is indeed a public good.
Furthermore, our circuits can serve as a well-defined model
system to examine the interplay between critical parameters
associated with altruistic death in response to stress. To this
end, we developed a kinetic model for the programmed circuit
dynamics (Equations (1)-(6), Supplementary Text, and
Figure 3B). In the model, we focused on the effects of several
experimentally tunable parameters, including the synthesis
rate of the public good (B;), the programmed death rate as
modulated by the synthesis rate of the E protein (f,), and the
initial stress level (or 6-APA concentration, a). Other key
determinants for the growth advantage of altruistic death are
the time frame within which the growth dynamics are
compared and the cell density at which programmed death is
triggered. At earlier time points, altruistic death is detrimental
as the population has not yet fully enjoyed the benefit of the
released public good, the degradation of 6-APA (Figure 3A and
B). Also, if programmed death was triggered at a low cell
density, the public-good release would be low (limited by the
total number of cells that can be possibly killed) and thus
altruistic death would not become advantageous after the
same duration of culturing (Supplementary Figure S3). These
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properties underscore the importance of factors defining the
bacterial life cycle (initial density and growth duration) in
determining the potential adaptive advantage of altruistic
death. In subsequent analysis, our experimental growth
dynamics were initialized with density of Agy=0.15-0.2
and compared at 24 h post 6-APA treatment.

At a specific stress level, the rate of public-good production
should affect the extent to which altruistic death can be
advantageous for the population. This can be analyzed by
varying the synthesis rate of BlaM. Indeed, for a=5.5 at time
zero, our model predicts that although increasing BlaM
expression improve growth of both PAD and NPD strains,
PAD strain is more fit than the NPD strain only when BlaM
expression is sufficiently high (8,>3.6) to compensate for the
cost of death (Figure 3C). Consistent with the prediction, at
400 pug/ml 6-APA, increasing BlaM expression by IPTG
enhanced overall growth, and the PAD strain outgrew the
NPD strain only for IPTG greater than 0.25mM (Figure 3D,
Supplementary Figure S4). Thus, public-good release needs to
be sufficiently high for altruistic death to be advantageous.

Prediction and validation of optimal death rates

Everything else being equal, the degree of programmed death
should dictate the maximum net benefit of altruistic

© 2012 EMBO and Macmillan Publishers Limited
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PAD (red) and the NPD (blue) strains following 6-APA treatment (a(0) = 5.5). 1 = 0.04 and 0 were used for PAD and the NPD strains, respectively, and B, = 5.5 was
used. (C) Simulated growth of PAD (red) and the NPD (blue) strains following 6-APA treatment (a(0) = 5.5) as a function of public-good production (solid lines). The PAD
strain is fitter only when coupled with sufficiently fast production of public good (red zone; B, > 3.6). Without 6-APA treatment, both strains reach the same high density
(dotted lines). Cell densities at T = 20 are shown. (D) Growth of PAD (red) and the NPD (blue) strains following 400 pg/ml 6-APA treatment, at varying induction levels of
BlaM modulated by IPTG (solid lines). Control cultures received no 6-APA (dotted lines). Cell densities (Agqo) at the 24th hour are shown. Source data is available for this

figure in the Supplementary Information.

death owing to the trade-off between programmed death and
public-good release. If too drastic, programmed death cannot
be sufficiently compensated for by the released public good. If
too little, the amount of released public good will also be low
and the population is unable to deal with the stress within the
time frame of interest. Indeed, our model predicts an optimal
degree of programmed death (as modulated by B, E synthesis
rate; Figure 4A). We note that the emergence of the optimal
death rate is critically dependent on temporal dynamics
(Supplementary Figure S5a). The optimality emerges only
after sufficient time; during the initial period, the bacterial
density decreased monotonically with an increasing pro-
grammed death rate by the E protein.

Interestingly, the optimal degree of programmed death
increases as the rate of public-good generation (B,) is
increased. When public-good generation is too slow
(B2<3.3), any programmed death is detrimental to the overall
population because the amount of public good released is too
small to cause substantial population recovery within the time
frame of interest. For sufficiently fast public-good production
(B>>3.3), the optimal degree of programmed death increases
with the rate of public-good generation: that is, it is better to
die faster if the public good is being released faster (per cell).

This can be understood by considering the temporal
dynamics of the system. In response to 6-APA, cells start to
express the E gene and undergo a ‘death phase’. The cell death
then releases BlaM, and 6-APA concentration starts to drop.
When 6-APA is sufficiently reduced, cell density enters its
‘recovery phase’. Now consider two strategies, slow death and
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fast death. When public-good production rate is low (B, =3.3),
the duration of the recovery phase is relatively short owing to
slow removal of 6-APA (Figure 4B, Supplementary Figure
S5b). This makes fast death less advantageous despite the fact
that it enables the population to enter the recovery phase
earlier with greater recovery rate (Supplementary Figure SSb).
When the public-good production rate is high (B,=5),
however, the duration of the recovery phase becomes
relatively long. Now the fast growth rate in the recovery phase
becomes more advantageous, making fast death a better
strategy (Figure 4C). In other words, the increased public-good
production renders more benefit for fast death than slow death
owing to the nonlinearity of the system. We note that at
sufficiently fast public-good production, the cost of drastic
initial death can outweigh the benefit: a moderate degree of
programmed death can release sufficient public good to
neutralize 6-APA. As a result, the optimal death rate slightly
decreases (Figures 4A, ,>5.5). At the same time, however,
higher public-good production rates result in overall elevation
of growth, leading to an insensitive dependence of cell density
on the death rate around the optimum (Figure 4A, inset).
These intricate dynamics highlight the complexity of the
cost-benefit trade-off in programmed death in the temporal
domain. They also underscore the need to use a kinetic model
to capture the trade-off; this aspect is also evidenced by the
requirement for sufficiently long growth duration for the
emergence of optimality in death rate (Supplementary Figure
S5a). We also note that the predicted optimality above is
relevant for clonal populations. In mixed populations, the
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optimal degree of programmed death will likely be different
and depend on the specific population structure (Ackermann
et al, 2008; Chuang et al, 2009) (see Supplementary Text and
Supplementary Figure S5c for further analysis and discussion).

To test the predicted optimality in the E synthesis rate, we
created variants of the PAD circuit, termed iPAD (intermediate-
level PAD), by attenuating the strength of ribosome-binding
site (RBS) of the E gene. Modulating translation as opposed to
transcription likely maintains activation characteristics of
Pampc in response to 6-APA (e.g., dose-response curve). Upon
6-APA treatment, all the variants exhibited intermediate
degrees of lysis, which were greater than that by the NPD
strain but less than that by the PAD strain (Figure 5A;
Supplementary Figure S6a). We repeated the experiment
shown in Figure 3A using iPAD strains to obtain a fitness
landscape. At 0.031 mM IPTG, neither PAD strain nor iPAD
strains did better than NPD, suggesting that altruistic death
was not sufficiently beneficial. However, at 0.063 mM IPTG,
we found the optimum at iPAD1 strain, the lowest degree of
programmed death (Figure 5B, light blue line). As the IPTG
concentration was increased, the optimum shifted to higher
degrees of programmed death, confirming the model predic-
tion (Figure 5B). We note that the further increase in BlaM
expression by arabinose resulted in a flat landscape
(Supplementary Figure S6b), consistent with model prediction
(Figure 4A, inset).

The source of the observed optimality is the interdepen-
dency of cost and benefit in public-good release (i.e., increased
lysis releases more public good). We note that recent studies
(Gore et al, 2009; Chuang et al, 2010) also modulated the cost
of public-good release in a synthetic, secretion-based coopera-
tion system. However, this interdependency was absent
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because the cost was not directly tied to public-good release
(modulation of cost was realized by using an arginine auxotroph
and changing arginine concentration in the growth medium). Also,
as noted in the modeling section (Supplementary Figure S5a), the
emergence of the optimal programmed death rate depended on
temporal dynamics (Supplementary Figure S6c).

Programed altruistic death and Eagle effect

As the degree of environmental stress in natural systems may
vary (e.g., different levels of immune response in different
hosts or different doses of antibiotic treatment), it is also
important to test the response of our synthetic system to
different doses of 6-APA. For a fixed f3,, our model predicts that
growth of strains with small E synthesis rates (f;<0.0006)
should monotonically decrease with increasing doses of 6-APA
(Figure 6A). In contrast, strains with faster E synthesis
(B1=0.006) should exhibit non-monotonic dependence: for
instance, at 3; =0.04, cell growth first decreases until a=0.4,
increases with further increase in 6-APA until a=5.25, after
which it starts to decrease again (Figure 6A, inset).

Consistent with these model predictions, we observed a
non-monotonic dose response for PAD strains with relatively
higher degree of lysis (Figure 6B). The iPAD3 and iPAD4 strains
had higher density at 400 ng/ml 6-APA than at 200 pg/ml
6-APA; both the iPAD4 and the PAD strains had higher
densities at 200 pg/ml 6-APA than at 100 pg/ml 6-APA. Given
its foundation on altruistic death, the non-monotonic dose
response appears only after sufficiently long growth duration
(Supplementary Figure S7). When observed at earlier times,
bacterial density decreased monotonically with an increasing
6-APA concentration.
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iPAD3 and iPAD4. Source data is available for this figure in the Supplementary Information.

A critical determinant for the generation of the non-
monotonic dose response is the intrinsic negative feedback
in the circuit: antibiotic-mediated cell lysis can lead to faster
antibiotic degradation, and potentially faster population
recovery. This logic can be readily realized in natural settings.
One example is the treatment of bacteria expressing the wild-
type beta-lactamase, Bla (i.e., periplasmic form). These
bacteria may be moderately susceptible to a beta-lactam
antibiotic. At a sufficiently high antibiotic dose, some cells will
lyse and release their beta-lactamase. Released Bla will be
more effective in degrading antibiotic than the native
periplasmic Bla as it gains access to the higher antibiotic
concentration in the culture than in the periplasm (Nagano
and Nikaido, 2009). Therefore, the dynamics of these bacteria
in response to antibiotic treatment will follow the same basic
logic as captured by our circuit. As such, these bacteria may
also exhibit non-monotonic response to increasing antibiotic
dose. To test this idea, we replaced the BlaM in PAD with its
wild-type counterpart Bla, which is periplasmic, to obtain
PADbla. Consistent with our expectation, we observed non-
monotonic dose responses when Bla production was moder-
ately induced by 0.11 and 0.037mM IPTG (Figure 7,
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Supplementary Figure S8). This result suggests that the logic
captured by our circuit is generally applicable and could
account for the ‘Eagle effect’, a counter-intuitive phenomenon
where bacteria appear to grow better when treated with higher
antibiotic concentrations.

Discussion

Programmed death has long been known in multicellular
organisms, such as apoptosis, where cells are programmed to
die for proper tissue development or prevention of cancerous
cell growth. In this case, programmed death is critical for
overall functionality of the individuals. Likewise, programmed
death is involved in diverse aspects in bacterial physiology,
including bacterial pathogenesis and stress response. In this
context, the need to explain its existence has led to the
proposal to consider programmed death as a social trait and,
more specifically, an ultimate form of cooperation. This idea,
however, has suffered from lack of explicit and thorough
experimental analysis and has thus remained as a major
problem in biology. To this end, our synthetic system provides
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Figure 7 Responses of a Bla-expressing PAD strain (PADbla) to increasing 6-
APA concentrations. Experiment was done similarly to Figure 6B except the
PADbla was used. For the following pairs, cell densities treated with a higher
6-APA concentration were significantly greater than those treated with a lower
6-APA concentration (P<0.001): 100 and 200 pg/ml 6-APA for 0.037 mM IPTG,
and 200 and 400 pg/ml 6-APA for 0.11 mM IPTG. The error bar for the condition
with 0mM IPTG and 400 pg/ml 6-APA is s.d. of seven replicates while those for
other conditions are from eight replicates done over two independent
experiments. Source data is available for this figure in the Supplementary
Information.

a well-defined platform to address this problem, and unequi-
vocally demonstrates the conditions where altruistic death
becomes advantageous at the population level.

First, we found that public-good release following pro-
grammed death needs to be sufficiently high and would be
maladaptive otherwise (Figure 3D). This idea is consistent
with the observation that lysis capability of a wild-type lab
strain of S. pneumoniae is reduced compared with its clinical
isolate (Guiral et al, 2005). Intuitively, lysis is unlikely to
provide any benefit under laboratory growth conditions
because the released public good, pneumolysin, is a virulence
factor that targets a variety of host functions, such as immune
response. In the absence of such benefit, laboratory culturing
of S. pneumoniae should lead to reduced lysis. Second, we
showed that there exists an optimal degree of programmed
death that depends on the amount of public-good release
(Figure 5B). Also, the density at which programmed death is
triggered has to be high enough for altruistic death to be
advantageous (Supplementary Figure S3). These results
provide an intuitive explanation for the regulation of
programmed death observed in E. coli. In the mazEF module,
the degree of programmed death is regulated by cell density
through an extracellular peptide signal (Kolodkin-Gal et al,
2007). The degree of programmed death is much smaller at a
low cell density than at a high density, indicating selection for
fine-tuning of the degree of programmed death depending on
the amount of public-good production.

From a practical perspective, it is increasingly recognized
that bacterial social traits can serve as potential targets for
antimicrobial treatment (Hentzer and Givskov, 2003; Andre
and Godelle, 2005; Brown et al, 2009; Swem et al, 2009); thus,
a better understanding of evolutionary aspects of bacterial
social behaviors (including programmed death) can provide
valuable insights for successful clinical intervention of
bacterial infections (Kohler et al, 2010). For instance,
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there are at least two ways to reduce the ‘benefit’ of altruistic
death: inhibiting occurrence of programmed death by inter-
fering with its upstream signaling pathway, and inhibiting
public-good production while letting programmed death be
triggered. The latter would likely be a better intervention
strategy because the bacterial population would still pay the
cost (i.e., programmed death) without benefiting from it
(analogous to PAD strain with very low or no BlaM
production). Also it is worth noting that bacterial social
behaviors have an important role in antibiotic resistance; a
recent study revealed that a small number of resistant mutants
can, at a fitness cost to themselves, provide protection to more
drug-sensitive cells, thereby enhancing the survival of the total
population (Lee et al, 2010). By providing direct experimental
evidence for the circumstances of the advantage of altruistic
death, our study constitutes an important step toward studying
its evolutionary dynamics and potential intervention strategies.

A next step is to study the dynamics of altruistic death in
mixed populations to examine other factors that are important
for the evolution of costly cooperative traits (Fletcher and
Doebeli, 2009). Conceptually, the condition for altruistic traits
to be evolutionarily favored can be described by the
Hamilton’s rule (Hamilton, 1964a, b), br>c, where b and c,
represent ‘benefit’ and ‘cost’ of altruistic traits whereas r
measures ‘relatedness’ between individuals. Hamilton’s rule
indicates that higher relatedness, larger benefit, and lower cost
favor evolution of altruistic traits. In this regard, previous
studies experimentally illustrated that strong population
bottleneck leads to higher r (Chuang et al, 2009). Our
additional modeling analysis of mixed population
(Supplementary Text) indeed showed that altruistic death
(i.e., B1 >0) could be evolutionarily maintained when there is a
strong population bottleneck (Supplementary Figure S5c).
Also, it has been shown that a well-mixed non-clonal
population can spatially segregate into clonal patches through
simple surface growth (Hallatschek et al, 2007), suggesting a
mechanism to generate a high level of assortment in nature.
While r depends only on population structure, b and ¢ often
have complex, non-intuitive dependence on systems para-
meters (Chuang et al, 2010). Our modeling analysis of
competition of NPD (B, =0) and PAD (B, >0) indeed illu-
strated this complexity under a simple population structure
with relatively high r (Supplementary Figure S9). In particular,
we found that PAD can outcompete NPD in a relatively narrow
range of B, (i.e., public-good production). A close examination
revealed that b shows a biphasic behavior while ¢ mono-
tonically increases for this range of B, satisfying Hamilton’s
rule only for a small range of B, (Supplementary Figure S9c, d).
Altruistic death can potentially be favored by direct coupling to
a benefit. For example, in the spore formation of social
amoeba, Dictyostelium discoideumn, the gene that leads to
suicide also confers competitive advantage during spore
formation. When mixed, a mutant lacking this gene avoids
suicide but is eventually outcompeted by wild-type cells
(Foster et al, 2004). Such pleiotropy makes the loss of ‘suicide
gene’ costly and could therefore stabilize altruistic death. Also
important is the regulation of programmed death. Cell-density-
dependent death (Kolodkin-Gal et al, 2007) and bistable
regulation that generates phenotypically distinct dying and
non-dying subpopulations (Reuven and Eldar, 2011) may help
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evolution of altruistic death by preventing unnecessary death.
Although altruistic death is generally prone to exploitation by
non-altruistic individuals, the combination of abovemen-
tioned mechanisms may allow its evolution.

Equally important, our results established a new mechanistic
explanation for the Eagle effect (Figures 6 and 7), which has
been observed in antibiotic treatment of a variety of microbial
species both in vivo (Eagle and Musselman, 1948; Lorian et al,
1979; Ikeda et al, 1987; Ikeda and Nishino, 1988; Lewin et al,
1991; Kondo et al, 2001; McKay et al, 2009) and in vitro (Ikeda
et al, 1990). Two explanations for the Eagle effect have been
proposed: reduced antimicrobial activity of the drug itself at
high concentration (Nishino and Nakazawa, 1976; Lewin et al,
1991) and induction of resistance mechanisms at high antibiotic
concentration (Ikeda et al, 1987; Ikeda and Nishino, 1988;
Kondo et al, 2001). Our results suggest another mechanism: the
release of beta-lactamase into environment through cell lysis.
By the same logic, any cellular components that are released by
cell lysis and able to counteract the antibiotic could potentially
cause the Eagle effect. Our mechanism provides a link between
two apparently unrelated phenomena, altruistic death and the
Eagle effect; it has implications for effective design of antibiotic
treatment protocols.

Materials and methods

Strains, growth media, and chemicals

E. coli strains constructed and used in this study are summarized in
Supplementary Table S1. E. coli strain SN0301 (ampDl, ampAl,
ampC8, pyrB, recA, and rpsL) (Lindberg et al, 1987) was used as a
parental strain of other strains. The ampDI mutation enables hyper-
induction of Py in response to beta-lactam antibiotics (Lindberg
et al, 1987). Unless otherwise noted, LBKM medium (10 g tryptone, 5g
yeast extract, 7g KCl, and 100 mM MOPS) (Balagaddé et al, 2005)
buffered at pH 7.0 was used for cell growth assays. pH was adjusted by
adding 5M KOH. For every experiment, x 100 6-APA solution was
prepared fresh by dissolving it in 1 M HCl. Spectinomycin (50 pg/ml),
kanamycin (50 pg/ml), and chloramphenicol (20 pg/ml) were used for
plasmid maintenance. Appropriate concentrations of IPTG were added
to growth medium when applicable.

Plasmids

All plasmids were constructed using standard molecular biology
techniques and summarized in Supplementary Table S1. Briefly, the
public-good module, pBlaM, was constructed by PCR-amplifying bla
gene from pSND-1 (gift from Dr Ron Weiss) without first 66 base pairs
and inserting it under Piyc/qrq-1 0f pPPROLar.A122 (Clonetech). A start
codon (atg) for the truncated bla was also included during the PCR
step, resulting in blaM. pBla was constructed in the same way except
that the wild-type bla gene was inserted instead of blaM. The suicide
module, pCSaE500, was constructed based on pTS1 (Sohka et al,
2009), which harbors gfp and tetC under ampR-Pypc cassette from
Citrobacter freundii. gfp and tetC were replaced with E gene, which was
PCR amplified from pRY100 (Roof et al, 1997). E gene was simply
removed by restriction digestion and blunt-end ligation to obtain pCSa
for NPD. To construct iPAD strains, we used a recently developed
algorithm, RBS Calculator (Salis et al, 2009), to design appropriate RBS
sequences of E gene (Supplementary Table S2). pCSaES00, a suicide
module of the original PAD, has RBS strength of 500 (arbitrary unit in
the algorithm) and the four variants have RBS strength of either 375 or
450. As the algorithm is usually accurate within a twofold range, the
resulting variants still exhibit differential RBS strength. GFP reporter
construct for Py,,¢ activity, pCSaGFP, was constructed by replacing E
gene in the suicide module with gfpmut3. RBS strength for GFP was
also reduced to minimize leaky expression of GFP.

© 2012 EMBO and Macmillan Publishers Limited
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Growth experiment

Cells transformed with appropriate plasmids were inoculated into
Luria-Bertani (LB) medium from single colonies and grown at 37 °C
overnight for 18-19 h. The overnight cultures were diluted by 200-fold
into LBKM medium (10 g tryptone, 5g yeast extract, and 7 g KCI per
liter, and 100 mM 3-(N-morpholino) propanesulfonic acid (MOPS),
buffered at pH 7.0 by adding 5 M KOH) and 200 pl cultures were grown
in 96-well microplates at 37 °C in an orbital shaker shaken at 400 r.p.m.
Unless otherwise indicated, appropriate concentration of 6-APA was
added after 4.5h (Agpo of 0.15-0.2). Throughout the experiment, two
sealing membranes were used to reduce evaporation while allowing
aerobic growth: the microplates were sealed first with AeraSeal (Excel
Scientific) and then Breathe-Easy membrane (Diversified Biotech).
This combination of membranes has been used as a way to achieve
both low medium evaporation and high bacterial growth (Borner et al,
2007). Absorbance at 600 nm (Agqo) was recorded using Victor 3 plate
reader (Perkin Elmer). After each measurement, the two membranes
were applied to the plate as described above. Unless otherwise noted,
error bars in each figure are s.d. of 8 replicates (four technical
replicates x two independent experiments).

Pampc reporter assay

If BlaM effectively degrades 6-APA and prevents cell-wall damage
when present in the cytoplasm, then BlaM expression alone should
decrease the induction of Pg,,c reported by GFP. However, GFP
expression did not show significant difference between with (blue, no
IPTG) and without (green, 1mM IPTG) BlaM induction, which
indicates that BlaM expression does not prevent cell-wall damage by
6-APA (Figure 2A). In contrast, when native beta-lactamase, bla, was
expressed, which is known to effectively protect cell from 6-APA
action, GFP expression decreased significantly (Figure 2A). Pgppc
assay strains carrying pBlaM or pBla were grown as described in the
previous section with or without 1 mM IPTG. GFP was induced using
50 ug/ml 6-APA and samples were taken 2 h after 6-APA treatment and
subject to flow cytometry analysis.

Protection assay

Overnight culture of PAD strain was diluted by 200-fold into LBKM media
and grown in culture tubes with or without 1 mM IPTG. When the Agpp
reached 0.15-0.2, these cultures were treated with or without 400 pug/ml
6-APA. After 5h, these cells were spun down and supernatant was
filtered by 0.2 pm cellulose-acetate membrane. BlaM activity in the
supernatant was assayed by growth of a 6-APA-sensitive strain
(Supplementary Table S1, assay strain) after 12 h in the supernatant in
a 96-well plate covered with mineral oil to prevent evaporation.

Summary of mathematical modeling

As detailed in Supplementary Text, a non-dimensionalized ODE model
for cell density (n), E protein (x), extracellular BlaM (b), and 6-APA (a)
was developed to analyze the system’s behaviors:

?TZ =gn—ln (1)

% =h <GZL:—(1 * o3 +x> —(te)x ()
% =B,In—vy;b 3)

% T 1% (@)

g=(1-n) Gl"ia (5)

N % (6)
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where g and [ represent cell growth rate and lysis rate, respectively. We
did not consider the growth effect of E protein as it appears to be minor
(Supplementary Figure S1) although incorporating this effect does not
change our conclusions qualitatively. Experimentally, modifying RBS
corresponds to changing f;; and changing IPTG concentration
corresponds to changing f,. Initial conditions of n(0) =0.2, x(0) =0,
b(0) =0, and a(0) =0-5.5 were used for all the simulation results
except for Figure 3B where n(0) =0.0058 to capture initial growth
before 6-APA treatment. The description and values of the parameters
are summarized in Supplementary Table S3. See Supplementary Text
for further details of model development.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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