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Single-cell experiments show that gene expression is stochastic and bursty,

a feature that can emerge from slow switching between promoter states with

different activities. In addition to slow chromatin and/or DNA looping

dynamics, one source of long-lived promoter states is the slow binding and

unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic

binding regime. Here, we introduce a simple analytical framework, known as

a piecewise deterministic Markov process (PDMP), that accurately describes

the stochastic dynamics of gene expression in the non-adiabatic regime.

We illustrate the utility of the PDMP on a non-trivial dynamical system by

analysing the properties of a titration-based oscillator in the non-adiabatic

limit. We first show how to transform the underlying chemical master equation

into a PDMP where the slow transitions between promoter states are stochastic,

but whose rates depend upon the faster deterministic dynamics of the transcrip-

tion factors regulated by these promoters. We show that the PDMP accurately

describes the observed periods of stochastic cycles in activator and repressor-

based titration oscillators. We then generalize our PDMP analysis to more com-

plicated versions of titration-based oscillators to explain how multiple binding

sites lengthen the period and improve coherence. Last, we show how noise-

induced oscillation previously observed in a titration-based oscillator arises

from non-adiabatic and discrete binding events at the promoter site.
1. Introduction
Gene expression is fundamentally a stochastic biochemical process that arises

from thermal fluctuations. An important source of stochastic noise comes from

the discrete and random binding and unbinding events between the regulating

transcription factors (TFs) and the promoter sites of the regulated genes. Conven-

tionally, these DNA binding and unbinding events are thought to be fast

compared with the downstream processes of transcription, translation and degra-

dation [1]. This separation of timescales leads to an approximation, known as a

quasi-steady state or adiabatic approximation, where the mean transcription

rate simplifies to a function of the concentrations and protein–DNA dissociation

constants at the promoter [2,3]. The adiabatic approximation is commonly used to

reduce the number of dynamical variables (e.g. promoter states) in gene regulat-

ory networks. However, it is also a bold assumption because experiments [4–7]

show that promoter dynamics (e.g. the binding and unbinding events of TFs)

can take place at a comparable, or even slower, timescale than the downstream

processes of gene expression. This observation has motivated theoretical studies

into the effects of slow or non-adiabatic binding on gene regulatory networks.
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Figure 1. Schematic diagrams of the idealized (a) activator-titration circuit (ATC) and (b) repressor-titration circuit (RTC). Protein X is a transcription factor and Y is an
inhibitor that can irreversibly associate with X to form an inactive complex. In the ATC, X is an activator that can sequentially bind multiple DNA sites in the promoter of
gene Y and increase transcription of the inhibitor. In the RTC, X is a repressor that can bind its own promoter and repress transcription. (Online version in colour.)
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There is a consensus that non-adiabatic binding results in

bursty production of transcripts [8,9], broadened distributions

of gene expression [10–12] and bi- or multi-stabilities that

reflect the discrete, underlying promoter states [11–13].

Many of these studies focused on the system properties at

stationarity and mostly ignored the effects of non-adiabatic

binding on the non-equilibrium dynamics of gene regulatory

networks. In this article, we address the following questions:

what are the dynamical consequences of non-adiabatic binding?

What kind of modelling framework accurately describes the

non-stationary dynamics of gene regulatory networks in the

non-adiabatic regime? To answer these questions, we use a

model of titration-based clocks to illustrate the effects of non-

adiabatic binding on dynamics (e.g. oscillation) and to show

how an analytical framework, known as a piecewise determinis-

tic Markov process (PDMP), accurately describes the stochastic

dynamics of the full model in the non-adiabatic regime. The

PDMP is an efficient method of analysis that is valid regard-

less of the mechanism (e.g. slow chromatin, DNA looping,

unbinding kinetics) responsible for slow-switching promoters.

This article is organized as follows. In §2.1, we introduce

two idealized models of titration-based circuits commonly

found in circadian clocks and immune signalling. We prove

in §2.2 that limit cycles are impossible in the fast-binding (adia-

batic) limit. In §2.3, we simulate the full chemical master

equation (CME) to demonstrate that the titration-based circuits

exhibit stochastic cycles in the slow-binding (non-adiabatic)

limit. We then transform the CME into a PDMP where tran-

sitions between discrete promoter states are stochastic but the

rates depend upon the faster deterministic dynamics of the

transcription factor concentrations regulated by these promo-

ters (§2.4). The PDMP makes no assumptions regarding the

timescales of promoter switching and is valid for both slow

or fast switching. It is an exact formulation of the CME in the

thermodynamic limit for systems where protein numbers are

large. The thermodynamic limit and, hence, PDMP analysis,

is well suited for stochastic gene dynamics in eukaryotic cells

where cell sizes and the number of regulatory proteins can be

large. We show that the PDMP framework accurately describes

the observed periods and coherence of stochastic cycles in the

non-adiabatic regime. We also demonstrate that the PDMP
can be readily applied to more detailed and mechanistic

models in §3. We conclude in §4 by discussing our results

and PDMP analysis in the context of previous work on

non-adiabatic binding and oscillation in gene networks.
2. Mathematical framework
We begin by introducing two idealized models of titration-

based gene regulatory networks commonly found in biological

oscillators. These models are ‘idealized’ in the sense that tran-

scription and translation are lumped into a single-stage of

‘production’, and the intermediate mRNA populations are

not explicitly modelled. We further simplify the cis-regulatory

architecture of each promoter to the fewest number of possible

binding states. The purpose of these idealized models is to

illustrate how PDMP analysis can be used to understand the

origin and properties of the stochastic cycles that emerge

in the non-adiabatic regime. We will relax some of these

assumptions in later sections.

2.1. Idealized models
Both idealized models consist of two genes, which produce two

kinds of regulatory proteins X (a TF) and Y (an inhibitor that

titrates X into an inactive complex; figure 1). Our first model

is called the activator-titration circuit (ATC) because protein X
is a transcriptional activator [14,15]. In this model, X increases

the production rate of inhibitor Y by binding to cis-regulatory

binding sites in the promoter of gene Y with an association

rate kY. There are a total of N Y cis-regulatory binding sites in

the promoter of gene Y and we assume that binding of X is

sequential, such that there are a total of N Y þ 1 promoter

states. Bound X dissociates sequentially from each binding

site with a rate uY. The production rate of gene Y depends non-

linearly on the number of X bound to the promoter because the

production rate is bb
Y (bound) when any of the binding sites are

occupied; otherwise, the production rate is bf
Y (free). We note

that bb
Y . bf

Y because X is an activator. Gene X is unregulated

and, thus, activator X is constitutively produced at a constant

rate bX. Last, inhibitor Y inhibits the activity of TF X by titration,

where one Y molecule irreversibly binds to one X molecule with

http://rsif.royalsocietypublishing.org/
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a bimolecular rate of association (a) and forms a non-functional

heterodimer. The idealized ATC can be modelled by the follow-

ing elementary reactions:

��!bX X (production of X),

��!
bf

Y Y, if sY ¼ 0 (production of Y),

��!
bb

Y Y, if sY . 0 (production of Y),

X�!dX
� (degradation of X),

Y�!dY
� (degradation of Y),

X þ Y�!a � (titration),

sY�!
xkY sY þ 1, if 0 � sY� N Y � 1 (binding),

and sY�!
uY sY � 1, if 1 � sY � N Y (unbinding):

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;
ð2:1Þ

Here, sY ¼ 0, 1, . . . ,N Y identifies the promoter state by its

number of bound X. A schematic diagram of the ATC can be

found in figure 1a. All the elementary rate constants are defined

in the sense of mass action kinetics, and x denotes the concen-

tration of TF X in the thermodynamic limit. In the stochastic

models that consider discrete molecules (detailed in §2.3), the

rates have to be properly scaled by V, which is a parameter

that quantifies the system size and is related to cell volume.

The scaling relationship between the mass-action rate constants

and the stochastic model rates can be found in appendix A.

The second model is called a repressor-titration circuit

(RTC) because X is a transcriptional repressor [15] (figure 1b).

This model differs from the ATC in two ways. First, the inhibi-

tor Y is now constitutively expressed at a constant rate bY.

Secondly, X negatively auto-regulates itself where X decreases

its own production rate by binding to cis-regulatory binding

sites in the promoter of gene X with an association rate kX.

There are a total of N X cis-regulatory binding sites in the pro-

moter of gene X and we assume that binding of X is sequential,

such that there are a total of N X þ 1 promoter states. Bound X
dissociates sequentially from each binding sites with a rate uX.

The production rate of gene X depends nonlinearly on the

number of X bound to the promoters, where the production

rate of X is bb
X (bound) when any of the binding sites are occu-

pied; otherwise, the production rate is bf
X (free). We note that

bf
X . bb

X because X is a repressor. The rest of the process and

parameters are similarly defined as in the ATC. The idealized

RTC can be modelled by the following elementary reactions:

��!bY Y (production of Y),

��!
bf

X X, if sX ¼ 0 (production of X),

��!
bb

X X, if sX . 0 (production of X),

X�!dX
� (degradation of X),

Y�!dY
� (degradation of Y),

X þ Y�!a � (titration),

sX�!
xkX sX þ 1, if 0 � sX � N X � 1 (binding),

and sX�!
uX sX � 1, if 1 � sX � N X (unbinding):

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;
ð2:2Þ
Similarly, sX ¼ 0, 1, . . . ,N X identifies the promoter state by its

number of bound X.

2.2. No limit cycle in the adiabatic limit
The aim of this section is to show that mass action kinetics

describing the ATC and RTC in the fast-switching (adiabatic)

limit do not allow deterministic limit cycles. Below, we generic-

ally use Z ¼ X or Y as the gene index and Z ¼ X or Y as

the protein index. The discrete switching events between the

bound TF at the promoter sites, sZ ! sZ + 1, are a random

birth-and-death process [16,17] where the birth rate kZ depends

on the concentration (x) of the transcription factor (TF) X. In the

fast-switching (adiabatic) limit, formally expressed as

O(xkZ),O(uZ)� O (any other transition rates), the variable x
is a slow variable and is treated as approximately constant. In

this limit, the birth and death rates are approximately

constant, and the quasi-stationary distribution (QSD) of sZ is

obtained using detailed balance of this one-dimensional

birth–death process [16]:

PQSD{sZ ¼ i} ¼ (xkZ=uZ)i

PN Z

m¼0 (xkZ=uZ)m
: ð2:3Þ

The effective production rate of the regulated gene, beff
Z , can be

derived using the QSD (2.3):

beff
Z (x) ¼ bb

Z þ
(bf

Z � bb
Z)PN Z

m¼0 (xkZ=uZ)m
: ð2:4Þ

In the thermodynamic limit, we denote the concentrations

of X and Y by x and y respectively, and the resulting mass

action kinetics of the ATC and RTC are described by the

following deterministic differential equations:

_x(t) ¼ F (x, y) ¼ beff
X (x)� dXx� axy, ð2:5aÞ

and

_y(t) ¼ G(x, y) ¼ beff
Y (x)� dYy� axy: ð2:5bÞ

For simplicity, we unified the expressions for the idealized

ATC and RTC where beff
X (x):¼ constant bX in the ATC and

beff
Y (x):¼ constant bY in the RTC. Equations (2.5) constitute

a two-dimensional dynamical system. The Bendixson cri-

terion [18] states that limit cycles do not exist when the

trace of the Jacobian, @xF (x, y)þ @yG(x, y), does not change

sign on a simply connected domain. On the biologically

relevant domain x � 0 and y � 0,

@xF þ @yG ¼
dbeff

X (x)

dx
� dX � dY � a (xþ y) , 0: ð2:6Þ

The trace of the ATC is always negative because dbeff
X (x)/

dx ¼ 0. The trace of the RTC is also always negative because

dbeff
X (x)/dx , 0. Thus, there are no deterministic limit cycles

for the idealized ATC and RTC in the adiabatic limit. If we

were to modify the ATC such that the activator X also stimu-

lates its own production (i.e. positive feedback), then

dbeff
X (x)/dx . 0 and it would be possible to have limit

cycles in the adiabatic limit.

2.3. Stochastic cycles in the non-adiabatic regime
We first develop a full stochastic model that describes

the dynamics where the population of molecules and the

number of bound promoter sites are all discrete. We will

then use this model to show the emergence of stochastic

http://rsif.royalsocietypublishing.org/


Table 1. Descriptions and values of the idealized model parameters.

parameter description ATC RTC order of reaction

V characteristic system size 103 103 n.a.

l scaling factor of the binding rate kZ and unbinding rate uZ, Z [ fX, Yg (1, 103) (1, 103) n.a.

N X number of binding sites on gene X 0 (1, 3) n.a.

N Y number of binding sites on gene Y (1, 3) 0 n.a.

b f
X basal production rate of gene X when the number of bound X ¼ 0 2 10 zeroth order

bb
X repressed production rate of gene X when the number of bound X . 0 2 0 zeroth order

b f
Y basal production rate of gene Y when the number of bound X ¼ 0 0 2 zeroth order

bb
Y activated production rate of gene Y when the number of bound X . 0 10 2 zeroth order

dX degradation rate of TF X 1 1 first order

dY degradation rate of inhibitor Y 1 1 first order

kX the binding rate of TF X to an empty target promoter site on gene X 0 0.2l second order

kY the binding rate of TF X to an empty target promoter site on gene Y l 0 second order

uX the dissociation rate of a TF X bound to promoter sites of X 0 0.4l first order

uY the dissociation rate of a TF X bound to promoter sites of Y 0.5l 0 first order

a the association rate of X and Y 10 10 second order
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cycles with well-defined periods in the non-adiabatic regime.

The state of the model is determined by (i) the population

of X, NX, (ii) the population of Y , NY, (iii) the bound promo-

ter state of gene X, sX and (iv) the bound promoter state of

gene Y, sY. The probability of having NX ¼ i, NY ¼ j, sX ¼ k,

and sY ¼ l at time t is given by Pi,j,k,l(t). The discrete-state sto-

chastic process of the idealized model is described by the

CME [16,17]:

_Pi,j,k,l ¼ (Pi�1,j,k,l � Pi,j,k,l)1{k¼0}Vbf
X

þ (Pi�1,j,k,l � Pi,j,k,l)1{k.0}Vbb
X

þ (Pi,j�1,k,l � Pi,j,k,l)1{l¼0}Vbf
Y

þ (Pi,j�1,k,l � Pi,j,k,l)1{l.0}Vbb
Y

þ dX[(iþ 1)Piþ1,j,k,l � iPi,j,k,l]

þ dY[(jþ 1)Pi,jþ1,k,l � jPi,j,k,l]

þ a

V
[(iþ 1)(jþ 1)Piþ1,jþ1,k,l � ijPi,j,k,l]

þ kX

V
[(iþ 1)Piþ1,j,k�1,l � i1{k,N X}Pi,j,k,l]

þ kY

V
[(iþ 1)Piþ1,j,k,l�1 � i1{l,N Y}Pi,j,k,l]

þ uX[Pi�1,j,kþ1,l � 1{k.0}Pi,j,k,l]

þ uY[Piþ1,j,k,lþ1 � 1{l.0}Pi,j,k,l], ð2:7Þ

where we have suppressed writing the t-dependence of Pi,j,k,l

for brevity. The boundary conditions Pi,j,k,l ¼ 0 when i , 0,

j , 0, k , 0, l , 0, k . N X or l . N Y are imposed. We unified

the model descriptions of ATC and RTC; for ATC, N X, kX,

uX: ¼ 0 and bb
X ¼ bf

X ¼ constant bX; similarly, for RTC,

N Y,kY, uY: ¼ 0 and bb
Y ¼ bf

Y ¼ constant bY. 1fconditiong is the

characteristic function: it is equal to 1 when the condition is

true; otherwise 0. The different rates and the protein popu-

lation scale as a function of system size V, as outlined in

appendix A [11,16]. The concentrations x and y in previous

sections are interpreted as the normalized population density
NX/V and NY/V, where NX and NY are the discrete

populations of regulatory proteins X and Y .

We refer to the model (2.7) as the full CME. Standard con-

tinuous time Markov chain simulations were constructed to

generate exact sample paths of the full CME of the ATC

and RTC [19,20]. We chose two sets of parameters listed in

table 1, where the ATC and RTC promoters have a single

binding site (N Z ¼ 1Þ and the only source of nonlinearity is

the titration of X by Y . We chose this parameter set because

it is simple and it illustrates the fundamental ingredients of

stochastic cycling in the non-adiabatic regime. We will con-

sider more complicated cis-regulatory promoters in later

sections. For each parameter set, we introduce a scaling

factor l, such that the binding and unbinding rates are,

respectively, parametrized by kZ :¼ l�kZ and uZ :¼ l�uZ. We

fixed �kZ and �uZ and systematically change the value of l in

order to examine the dynamics of the same model in both

the adiabatic and non-adiabatic regime.

In figure 2a,b, we present sample paths of the full CME.

We do not observe limit cycles in (x, y) for the idealized

ATC or RTC in the fast binding and unbinding limit (i.e. adia-

batic regime, l ¼ 1000), as predicted by our analysis in §2.2.

When we decreased the parameter l to 1, the system entered

a regime where the timescale of binding and unbinding

between the TF and gene is comparable to other processes.

In this non-adiabatic regime, figure 2b shows alternat-

ing high-amplitude expression of X and Y that appears

oscillatory. We measured the ‘period’ of each stochastic

cycle using a protocol detailed in appendix B. The measured

period of stochastic cycles exhibits a unimodal distribution

with a dominant frequency, as shown in figure 2e.
2.4. Derivation of the PDMP approximating gene
expression dynamics in the non-adiabatic regime

In this section, we develop the PDMP framework [21,22] of the

full CME to analyse and understand the observed stochastic

cycling in the non-adiabatic regime. The idea of PDMP is to

http://rsif.royalsocietypublishing.org/
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Figure 2. Sample paths of the full CME of the ATC and RTC in the (a) adi-
abatic regime (l ¼ 1000) and (b) non-adiabatic regime (l ¼ 1) for a single
binding site (N Z ¼ 1). (c) Sample paths of the constructed piecewise deter-
ministic Markov process when l ¼ 1 (§2.4). (d ) The alternative deterministic
limit of the processes (§2.8). (e) Quantification of the periods of the stochastic
cycles. (Online version in colour.)
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reformulate the master equation conditioning on the discrete

promoter states, (k, l) [ {0, 1, . . .N X}� {0, 1, . . .N Y}. Then, for

any fixed promoter states (k, l ), we approximate the stochastic

dynamics in the TF population space using a set of ordinary

differential equations (ODEs), thus leaving the discrete and

Markovian stochastic switching in the (k, l )-space. This

approximation is accurate for large system size (V) or the ther-

modynamic limit [23,24]. The PDMP framework makes no

assumptions regarding relative timescales and is equally

valid for adiabatic and non-adiabatic regimes in the
thermodynamic limit. To derive the PDMP, we first defined a

continuum-limit probability density pk,l(x, y, t)/ Pi,j,k,l(t) with

the scaled variables x: ¼ i/V and y: ¼ j/V. After inserting

the pk,l(x, y, t) into the master equation (2.7), performing a

Kramers–Moyal expansion [16,17] with respect to large

system size V and collecting terms to the lowest order

(O(V0)), we arrived at the coupled partial differential equations

for the probability density pk,l ; pk,l(x, y, t):

@tpk,l ¼ �@x[pk,l(1{k¼0}b
f
X þ 1{k.0}b

b
X � dXx)]

� @y[pk,l(1{l¼0}b
f
Y þ 1{l.0}b

b
Y � dYy)]

� (@x þ @y)(pk,laxy)

þ kXx(pk�1,l � 1{k,N X}pk,l)

þ kYx(pk,l�1 � 1{l,N Y}pk,l)

þ uX(pkþ1,l � 1{k.0}pk,l)

þ uY(pk,lþ1 � 1{l.0}pk,l): ð2:8Þ

The coupled partial differential equations describe the

evolution of joint probability density pk,l(x, y, t). Again, the

‘boundary conditions’ in the (k, l )-space, pk,l ¼ 0 if k , 0, l , 0,

k . N X or l . N Y, are imposed. Note that the evolution con-

tains two parts: some terms contain @x or @y and describe the

Liouvillian flow, whereas other terms contain kZ or uZ and

describe the Markovian switching between discrete promoter

states (k, l ). Because the total state follows the deterministic

Liouvillian flow between stochastically switching discrete

state (k, l ), the resulting process is referred to as the PDMP

[25,26]. Equation (2.8) describes the evolution of the joint prob-

ability density. Equivalently, the sample paths of the PDMP can

be described by a set of ODEs with randomly switching

parameters (which is detailed in appendix D). Using the

sample-path representation, the PDMP of the ATC and RTC

models with a single promoter site (N Z ¼ 1) are summarized

in the schematic diagrams presented in figure 3a,b.

Kinetic Monte Carlo simulations using the algorithm

described in appendix C were implemented to generate the

sample paths of the PDMP in the non-adiabatic (l ¼ 1)

regime (figure 2c). These PDMP sample paths capture the sali-

ent features of the dynamics of the full CME in figure 2b. For

example, the measured distribution of stochastic cycle periods

using the PDMP is in perfect agreement with that of the full

CME (figure 2e). Numerically, the advantage of the PDMP

framework is that the kinetic Monte Carlo simulations are

faster than the continuous time Markov chain simulations of

the full CME because x, y are determined by numerically

integrating ODEs, when the system size V� 1.

2.5. Linearization of the PDMP
While the PDMP can be numerically simulated for any given

state, the evolution of the TF concentrations is described by a

set of nonlinear ODEs that do not allow for analytic solutions.

The nonlinearity comes from the term axy, which describes

the titration (second-order reaction). We developed a lineariza-

tion approximation, which uses the fast titration limit (i.e.

large axy compared to any other reactions) to reduce the non-

linear ODEs into linear ones. A consequence of this

linearization is that each PDMP state is described by two regimes

(either x . 0, y ¼ 0 or x¼ 0, y . 0). In the ‘linearized PDMP’, the

ODEs are linear (represented in figure 3c,d), and the transition

between these two regimes is determined by determinstic titra-

tion of x or y. In each of the compartments, the linear ODE’s

allow analytic solutions and facilitate quantification of the
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ẏ = bY
f  – dYy – axy

sX = 0
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Figure 3. Schematic diagrams of the derived piecewise deterministic Markov process (PDMP) for (a) idealized activator-titration circuit (ATC) and (b) idealized repressor-titration
circuit (RTC). Both models have a single promoter site (N Z ¼ 1). The linearized PDMP for ATC and RTC are shown in (c) and (d ), respectively, where the green circular arrows
indicates the direction of the emergent stochastic cycles. Dark blue (sZ ¼ 0) and light red (sZ ¼ 1) boxes denote promoter states with different production rates where
bX . bY and bY . bX, respectively. The transitions between the two regimes (x ¼ 0, y . 0) and (y ¼ 0, x . 0) are due to titration. (Online version in colour.)
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random switching times. We used kinetic Monte Carlo simu-

lations with the algorithm described in appendix C to generate

sample paths of the linear PDMP in the non-adiabatic (l ¼ 1)

regime. The measured distribution of stochastic cycle periods

using the linear PDMP is similar to that of the full CME

(figure 2e), although it tended to underestimate the shorter

cycles that occur in the PDMP and full CME.

2.6. Origin of stochastic cycles
The PDMP schematic in figure 3 suggests that the stochas-

tic cycles arise from the two-state nature of the regulated

promoter, which must follow cyclical Markovian dynamics

(sZ ¼ 0! 1! 0! 1 . . .). To demonstrate, we consider a
two-state promoter with constant transition rates (k þ and

k2), e.g. a promoter with a single binding site and a fixed

concentration of a regulating TF. This trivial two-state

promoter system generates stochastic cycles with a unimodal

distribution of ‘period’ (t) given by a hypoexponential

distribution:

r(t) ¼ kþk�
kþ � k�

(e�k�t � e�kþt), ð2:9Þ

with a mean period mt ¼ 1/kþ þ 1/k2 and variance s2
t ¼

1/kþ
2 þ 1/k2

2 . The mean and variance of the period are a

sum of the mean and variance of the individual transitions in

the two-state cycle because the waiting times are

http://rsif.royalsocietypublishing.org/
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independent. The period distribution is qualitatively similar

to figure 2e, which suggests that stochastic dynamics of a

two-state promoter explain much of the stochastic cycling

observed in the single binding site ATC and RTC model.

In the non-adiabatic regime, the faster protein dynamics

faithfully track the underlying promoter state dynamics and

generate large-amplitude stochastic cycles in (x, y).

This raises the question of whether stochastic cycling

between two promoter states can be called oscillation.

This is difficult to answer because the distinction between

stochastic cycling and oscillation is ill-defined. For example,

by including mechanisms that reduce variance in the timing

of individual transitions, one can produce cycles that are

more coherent. In the extreme limit where each transi-

tion has no variance, the period of the two-state cycle has

no variance and is indistinguishable from a deterministic

limit cycle. In the following section, we will investigate

potential mechanisms that reduce the variance of the sto-

chastic transition times and make the stochastic cycles

more ‘deterministic’.

2.7. Increased coherence of stochastic cycles
in ATC and RTC

The linearized ATC and RTC in figure 3c,d shows that

the system often cycles through four discrete states that

alternate between stochastic promoter switching and deter-

ministic titration of x, y. The only state where the system

has more than one ‘option’ is sZ ¼ 1 and x . 0 (bottom

right box): it can transit to either sZ ¼ 0 and x . 0 by a dis-

sociation event of bound X or to sZ ¼ 1 and x ¼ 0 by

deterministic titration of x. When uZ is sufficiently small

(i.e. slow dissociation rate in the non-adiabatic regime), the

system favours the latter route, which induces a ‘full cycle’

through all four discrete states in the anticlockwise order

(green arrow in figure 3). As described below, this ‘full

cycle’ and the x-dependence of the association rate conspire

to reduce variance and produce more coherent stochastic

cycles.

The predominant resource of uncertainty in the ‘full

cycle’ of the ATC and RTC is the stochastic promoter

switching (horizontal transitions) because the titration of x
(upward arrow) and y (downward arrow) are deterministic

and exhibit little variance. As before, the transition rate

from sZ ¼ 1! 0 is constant and, thus, the waiting time for

dissociation is a simple exponential where r(t) ¼ ue2ut

(figure 4a). Unlike the previous model, the transition from

sZ ¼ 0! 1 is not constant and depends on x(t), which can

be quantified by computing the survival function [27].

Using the linearized ATC, x(t) can be exactly solved for the

sZ ¼ 0 state:

x(t) ¼ x(t0)e�dX(t�t0) þ bX � b f
Y

dX
(1� e�dX(t�t0)), ð2:10Þ

and the survival probability starting with t ¼ t0 is equal to

P{Tbinding . t} ¼ exp �
ðt

t0

kYx(t0) dt0
� �

: ð2:11Þ

The distribution of binding times is uniquely determined by

this survival function, which we plot for different initial con-

ditions x0 in figure 4b. A similar calculation can be performed

for the linearized RTC (figure 4c). The variance in binding

time is reduced when initial x0 is close to zero because the
system must wait until the population of x increases to a

value above which binding is likely to take place. This explains

why the ‘full cycle’ reduces variance of the total period because

the system always starts at sZ ¼ 0 and x ¼ 0 (top left box in

figure 3c,d ) due to the previous titration and dissociation of

x. Thus, x0 ¼ 0 and the waiting time before x binds the promo-

ter will have reduced variance. We remark that the binding

times are not exponentially distributed and are dependent on

the concentration of the activator (x) in general. Hence, the tran-

sition is not Markovian as some of the ‘memory’ is stored in

the TF space (x, y).

2.8. Alternative deterministic limit without invoking
the adiabatic approximation

The deterministic dynamics in equation (2.5) describe the

mean (x, y) concentrations in the adiabatic limit where

the effective protein synthesis rates are determined by the

stationary distribution of promoter states. The PDMP frame-

work explicitly models the stochastic binding and unbinding

events and is valid in both the adiabatic and non-adiabatic

limits. Here, we consider an alternative ‘deterministic limit’

(ADL) of the linear PDMP, where the remaining variability

due to stochastic binding and unbinding is artificially set to

zero and the stochastic cycle becomes a ‘deterministic’ limit

cycle. We use the first moments of the random waiting

times as a deterministic residence time of a promoter state

and, thus, the dynamics in (x, y) will be deterministic. The

first moments can be easily computed numerically from

equation (2.11) for the linear PDMP:

E½DTbinding � t0� ¼ �
ð1

t0

t
dP{Tbinding . t}

dt
dt

¼
ð1

t0

P{Tbinding . t} dt: ð2:12Þ

When there is more than one possible reaction, we

choose the reaction with the minimal deterministic waiting

time. This is analogous to Gillespie’s ‘first reaction’

method [19]. For the parameter set of the idealized ATC

and RTC in figure 2, the average time to titrate all the X is

shorter than the average dissociation time and the system

cycles through all four states. The time series of the ATC

and RTC in the ADL is shown in figure 2d.
3. Analyses of more detailed mechanistic models
The PDMP framework will now be applied to more sophisti-

cated models of the ATC. A previous model of the ATC [15],

which we call the KB model, showed that multiple binding

sites lengthened the period and improved coherence of

stochastic cycling. Using the PDMP, we will show that mul-

tiple binding sites per se are insufficient to improve

coherence. Rather, slow mRNA dynamics and multiple bind-

ing sites conspire to push the dynamics across all the

promoter states and improve the coherence of stochastic

cycling. The second model of the ATC [28], which we call

the VKBL model, has an additional positive feedback loop

where the activator activates itself in addition to activating

the inhibitor. The authors previously showed that the VKBL

model exhibits excitation–relaxation or noise-induced

oscillation beyond the Hopf bifurcation. We will use PDMP

analysis to reveal that the fluctuations in the random

http://rsif.royalsocietypublishing.org/
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unbinding events of the bound TF on the promoter sites are

essential for inducing transcriptional noise, which in turn

drives the excitable system away from its stable fixed point

and induces large excursions in a semi-periodic manner.
 lsocietypublishing.org
J.R.Soc.Interface

15:20170804
3.1. Multiple binding sites do not improve coherence
of stochastic cycling in idealized ATC and RTC

One explanation for the improved coherence of stochastic

cycling in the KB model is that the coefficient of variance

(CV) of the total period is reduced by increasing the

number of steps in the ‘full cycle’. For example, if there are

N independent stochastic steps in the full cycle and if the

means and variances at each step are of equal magnitude,

then the mean and variance of the total period scales with

N but the CV decreases as
ffiffiffiffi
N
p

. To test this idea, we simulated

the idealized ATC and RTC with multiple promoter sites

(N Z ¼ 3) using the full CME with the parameters listed in

table 1. As before, we only see stochastic cycling in the

non-adiabatic limit (figure 11a,b). Strikingly, the distribu-

tion of periods was similar to that of simulations for single

binding sites; compare figures 2e–11e. To understand

why multiple binding sites did not increase the period or

improve the coherence of stochastic cycles, we first trans-

formed the full CME into a PDMP (appendix D). We

confirmed that simulations of the PMDP accurately repro-

duced the results of the full CME; see figure 11c. We then

reduced the PDMP into a linearized PDMP framework,

which explains why multiple binding sites in the idealized

ATC and RTC do not significantly alter the length of

the period or improve coherence. The linear PDMP shows

that the system becomes trapped in a ‘mini-cycle’ between

the sZ ¼ 0 and sZ ¼ 1 promoter states at the blue and red

boundaries (figure 6). The production rate changes instan-

taneously upon promoter state switching across the

boundary, and deterministic titration of x will immediately

start pushing the system upwards (red box). The timescale

of titration is typically faster than that of the next stochastic

binding and, thus, produces a stochastic mini-cycle around

the boundary. This mini-cycle dynamic is also reflected in

the ADL of the ATC and RTC, as shown in figure 11d.
3.2. Origins of improved coherence in the KB model
The KB model has several additional features compared to

the idealized ATC, which could explain the observed increase

in the period and coherence of stochastic cycles. First, the

dynamics of mRNA transcription, degradation and protein

translation are explicitly modelled. Second, the activators

form homodimers before they can bind to the promoter sites

and regulate gene expression. Third, the homodimers bind to

the promoter sites independently and no longer need to bind

sequentially (i.e. distributive binding). Last, the activator

and inhibitor heterodimer is no longer irreversible and can

dissociate to form monomers.

Below, we describe PDMP analysis of the KB model [15]

for the ATC shown in figure 5a. Beginning with the master

equation governing the KB model, we performed the

system-size expansion presented in §2.4 and arrived at the
following PDMP:

d

dt
[rA] ¼ �dm[rA]þ r0

V
,

d

dt
[rI] ¼ �dm[rI]þ

1{G¼0}rf þ 1{G.0}rb

V
,

d

dt
[A] ¼ �dp[A]þ b[rA]� 2g[A]2 þ 2e1[A2]

� g[A][I]þ e2[AI],

d

dt
[A2] ¼ �dp[A2]þ g[A]2 � e1[A2],

d

dt
[I] ¼ �dp[I]þ b[rI]� g[A][I]þ e2[AI],

d

dt
[AI] ¼ �dp[AI]þ g[A][I]� e2[AI],

G��������!a(Gmax�G)[A2]
Gþ 1,

and G�!uG
G� 1:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð3:1Þ

We used the same variables and parameter set in figure 6 of

the original paper [15]. The state variables, [rA], [rI], [A], [A2],

[I ], [AI] and G are the concentrations of the activator

mRNA, inhibitor mRNA, monomeric activators, homodimeric

activators, inhibitors and heterodimers. G is the promoter state

variable, Gmax ¼ 3 is the total number of binding sites and V is

analogous to the system size. The association and dissocia-

tion rates are multiplied by G and (Gmax 2 G) because there

are multiple combinations of promoters with the same

number of bound activators due to distributive binding.

We reduced the PDMP into a linear PDMP (appendix E).

The Monte Carlo kinetic simulation of the linear PDMP

gives similar results to the full CME of the KB model; see

figure 9a,b. In both cases, the stochastic cycles exhibit a

well-defined distribution of periods with reduced CV, as

previously observed.

The schematic of the linear PDMP in figure 7 suggests that

the period and coherence improved because the mRNA

dynamics introduce a time lag between the change in mRNA

production rate and the resulting protein synthesis rate.

Thus, even though the transcription rate changes instan-

taneously upon crossing the boundary when G ¼ 0! 1, the

mRNA levels will respond and reach a new state on the time-

scale set by the mRNA degradation rate dm. This lag delays the

process of deterministic titration, which requires new inhibi-

tor synthesis, such that G can reach saturation before x is

titrated. As a consequence, the KB model now goes through

the largest cycle from G ¼ 0 to G ¼ 3. Given the importance

of the lag, we expect the coherence of stochastic cycling to

decrease upon increasing the rate of mRNA degradation

and, thus, making the mRNA more responsive to changes in

transcription. We tested this idea by rescaling the mRNA

degradation dm ¼ 4�dm and protein translation b ¼ 4�b, such

that the total protein levels stayed fixed, but the mRNA

degradation rate could be varied through 4. Our results in

figure 9c confirm that increasing the mRNA degradation rate

via larger 4 created shorter and less coherent stochastic

‘mini-cycles’, similar to the idealized ATC which had a

measured CV ¼ 0.622.

We noted that the variance of the waiting times of binding

events in the linear PDMP was much less than those of

unbinding events. This motivated us to keep only the stochas-

tic unbinding events whose waiting times are all exponentially

http://rsif.royalsocietypublishing.org/
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distributed and take a deterministic waiting time for the bind-

ing events by evaluating the first moment of the cumulative

distribution (E 2). The resulting model is summarized in

figure 8 and is referred to as the reduced PDMP. In the reduced

model, the only stochasticity—the random unbinding
events—results in a random duration in a series of promoter

states which actively produce the inhibitor I (top row of

figure 8). The excellent agreement between the reduced

PDMP and full CME of the KB model suggests that the varia-

bility in stochastic cycle times is mostly determined by the

http://rsif.royalsocietypublishing.org/
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ṙ2 = rb − dmr2
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(a = 0, z ≥ 0)
ṙ1= r0 − dmr1

ṙ2 = rb − dmr2

ż = b(r2 − r1) − dpz

G = 0
(a ≥ 0, z = 0)
ṙ1= r0 − dmr1

ṙ2 = rf − dmr2

ȧ = b(r1 − r2) − dpa

G = Gmax = 3
(a > 0, z = 0)
ṙ1= r0 − dmr1

ṙ2 = rb − dmr2

ȧ = b(r1 − r2) − dpa

Figure 8. The reduced PDMP approximating the KB model [15]. The waiting time of the deterministic activation is computed as the first moment of the cumulative
distribution equation (E 2). (Online version in colour.)
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stochasticity of unbinding events (figure 9d ). Although the

serial nature of unbinding events helps reduce the overall

CV and improve the coherence of stochastic cycling, the ran-

domness of unbinding events propagates nonlinearly and

contributes to the overall uncertainty of the stochastic cycle

period. For example, in each ‘episode’ of serial stochastic

unbinding, the number of synthesized inhibitors will be a

random quantity that subsequently determines the time to

titrate the produced I back to zero (downward arrow) before

the promoter state can deterministically cycle back to the

actively producing I state (G ¼ Gmax and a ¼ 0).
3.3. Noise-induced oscillation in the VKBL model
We then turned our attention to the ATC model studied

by Vilar et al. [28], whose schematic is shown in figure 5b.

In the VKBL model, the activator activates itself in

addition to the inhibitor and, thus, can exhibit determinis-

tic limit cycles. However, the authors deliberately studied

the VKBL model for a parameter set where there were no

deterministic limit cycles but the system exhibited exci-

tation–relaxation or noise-induced oscillations. Below,

we will use PDMP analysis to show that stochastic pro-

moter fluctuations are responsible for kicking the stable
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the probability distribution of the stochastic periods when the scaling factor 4 ¼ 1, as measured from 105 stochastic cycles of the full CME, PDMP and reduced
PDMP (figure 8). (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170804

11

 on August 23, 2018http://rsif.royalsocietypublishing.org/Downloaded from 
fixed point into an excitable excursion. The PDMP of the

VKBL model is given by

d[MA]

dt
¼ 1{GA¼0}aA þ 1{GA.0}aA0 � dM[MA],

d[MR]

dt
¼ 1{GR¼0}aR þ 1{GR.0}aR0 � dM[MR],

d[A]

dt
¼ bA[MA]� dA[A]� gC[A][R],

d[C]

dt
¼ gC[A][R]� dA[C]

d[R]

dt
¼ bR[MR]� dR[R]� gC[A][R]þ dA[C],

GA ¼ 0
gA[A]

O
uA

GA ¼ 1

and GR ¼ 0
gR[A]

O
uR

GR ¼ 1:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð3:2Þ

We adopt the same symbols and parameters of figure 5 from

the original work [28], except for discrete GA [ f0, 1g and GR

[ f0, 1g, which represent the number of bound activators on

the promoters of A or R.

The sample path of the PDMP faithfully captures the signa-

ture of the dynamics of the full CME in the parameter regime

with noise-induced oscillations; cf. figure 10a,b. The PDMP

only takes into account the stochasticity of the binding and

unbinding events (i.e. GZ ¼ 0 N 1); the rest of the processes
are described by deterministic evolutionary equations. Thus,

we can conclude that the noise-induced oscillations in the

full CME are due to the discrete binding and unbinding

events at the promoter site. In both the full CME and PDMP,

the system constantly switches back and forth between

GA ¼ 0 N 1 and produces a bursty activator mRNA population

(figure 10a,b). However, occasionally, an unbinding event

takes longer than usual, which leads to a larger-than-average

number of activator mRNAs. This larger-than-average

number of activators titrates all the inhibitors (R) and the critical

accumulation of activator excites the system through a large

excursion in the phase space; see figure 10b. The ADL of the

VKBL model does not exhibit any excitable excursions, as

shown in figure 10c. By definition, the ADL does not exhibit

any variability in the binding and unbinding events. The lack

of excitable excursions in the ADL is consistent with the idea

that rare fluctuations in the unbinding times are the critical

ingredient for generating enough activators (A) to titrate all

the inhibitors (R) in the system.
4. Discussion and future outlook
Dynamical models of gene expression often assume that

switching between promoter states (e.g. binding and unbinding

of regulatory proteins) takes place at a much shorter timescale

than any other processes in the model. This idealization,

known as the quasi-steady-state or adiabatic approximation

[2,3], uses an effective rate inferred from the QSD of the promo-

ter states. When the timescale of promoter state switching is
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comparable to other processes, which is typically the case for

natural systems, this approach fails to describe the resulting

dynamics accurately.

In this article, we investigated the stochastic dynamics of bio-

logical clocks in the non-adiabatic regime. Previous work [14,15]

demonstrated that time delays, which arise from slow promoter

switching in the non-adiabatic regime, are important for the

emergence of deterministic limit cycles. These studies modelled

the transcription rate as an ensemble-averaged transcription rate

of the discrete promoter states. Such atreatment would be precise

if one had a large copy number of independent promoters, e.g.

models in [29]. However, the copy number of genomic DNA is

small in many biological systems and the transcription rate at

any given time can only be one of the two discrete values bb
Z

and bf
Z. When the switching timescale is fast (i.e., adiabatic),

the promoter state goes through a large number of cycles

between consecutive transcription events, and the effective rate

of transcription converges to the ensemble-averaged tran-

scription rate. However, when the switching timescale is slow

(i.e. non-adiabatic), the averaged transcription rate cannot

capture the nature of alternating rates of transcription events.

The effects of non-adiabatic promoter fluctuations have

been investigated, mostly numerically, in the literature of bio-

logical clocks. Both the studies of Potoyan & Wolynes [30]

and Gonze et al. [31] reported that slower switching rates com-

promise the coherent oscillation seen in the deterministic limit.

In a slightly different model, Feng et al. [32] observed coherent

oscillation when the binding and unbinding events were either

very fast (adiabatic) or very slow (non-adiabatic). Last, stochas-

tic resonance was reported by Li & Li [33], who showed that

there exists a ‘sweet spot’ where the promoter switching is

neither fast or slow. In the above-mentioned studies, the

adopted methods range from direct computation of the eigen-

values of the truncated CME [30], direct computation of the

stationary distribution [32], and direct continuous-time

Markov simulations and power spectral analyses of the gener-

ated sample paths [31,33]. Although it is straightforward to

carry out these analyses, they reveal little about the mechan-

isms of stochastic oscillations. For example, these

methodologies could not answer why a system with more pro-

moter binding sites exhibits more coherent oscillation, or

quantify the impact of mRNA or post-translational reactions,

e.g. dimerization.
We present a mathematical framework to analyse the sto-

chastic dynamics of gene expression in the non-adiabatic

regime. In this framework, we begin with the most detailed

description of the individual molecular-based and stochastic

dynamics, the CME and systematically construct the PDMPs,

which retains the discrete and stochastic switching nature of

the genetic states. This framework is a natural generalization

of our previous work [11,21,22], and the derived PDMP has

been shown to be a powerful mathematical tool to model

coloured noise in stochastic gene expression [12,34–42]. Our

analyses showed that, for the models we investigated, the

PDMP faithfully captures dynamical features of the individual

molecular-based models. We further proposed a scheme to

construct an alternative ‘deterministic description’ of the

dynamics without invoking the adiabatic assumption. These

analytical tools revealed the emergent non-equilibrium

transitions between the discrete genetic states in the non-

adiabatic regime. In the idealized models, both the ATC and

RTC exhibited stochastic cycling in the discrete genetic states.

We showed that a more robust and coherent oscillation (the

full cycle) occurred in a regime of slower dissociation rate

(small uZ in the idealized model). The analysis also revealed

the interactions between the TF population and the transition

between the discrete genetic states, showing that it is necessary

to consider the joint process describing the TF dynamics and

gene switching dynamics. While the joint process (PDMP) is

Markovian, it is known that the TF dynamics alone [43]

is non-Markovian. In this work, we showed that the gene

switching dynamics alone is also non-Markovian.

To illustrate the practicality of these analytical tools, we

analysed more sophisticated and detailed models. Interest-

ingly, in the two models we investigated, the analysis

revealed different mechanisms of to induce oscillations. In

the KB model [15], we found that the oscillation was induced

by the slow-transitions between the discrete genetic states,

similar to the idealized models. Nevertheless, in contrast to

the idealized model which exhibits similar dynamics when

we changed the number of promoter sites N Z, the inclusion

of the mRNA in the KB model pushes the system to transit

through more genetic states. This is because the product of

the gene, i.e. mRNA, no longer directly (and abruptly) regu-

lates its own production rate and there is a delay. As the

predominant stochasticity of the system arises from the
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random unbinding events, the ability to travel through more

internal stages decreases the coefficient of variance. Conse-

quently, more coherent oscillations were observed in the KB

model, compared to the idealized models. By applying the

analytical tools to the VKBL model [28], we were able to

show that the average (deterministic) genetic switching

events were not sufficient to induce the oscillation. Instead,

longer-than-average binding events were responsible for excit-

ing the FitzHugh–Nagumo-like system to go through a large
excursion in the phase space. Biologically, these longer-than-

average binding events are called transcriptional bursting

noise. It is straightforward to show that by increasing transla-

tional bursting, achieved by simultaneously scaling up the

translation rate and scaling down the transcription rate, one

can also induce similar oscillations (data not shown).

On a final note, the PDMP is derived from the detailed

CME and can be viewed as a hybrid model which combines

the continuous and deterministic TF dynamics and the discrete

and stochastic promoter switching dynamics. The PDMP is

related to other stochastic-hybrid approaches [44–49]. How-

ever, on a conceptual level, we explicitly demonstrate how

the PDMP arises from the fully discrete CMEs in the limit of

large protein numbers (e.g. eukaryotic cells). We further

show that the PDMP accurately captures stochastic gene

dynamics of the full CME in the non-adiabatic regime. The

PDMP is therefore a promising ‘bridge model’ connecting

detailed and mechanistic computational models and highly

idealized discrete-state oscillators [50–52], phase oscillators

[53–56] or one-dimensional delay-induced oscillators [57,58]

which were previously proposed ad hoc.
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Appendix A. Scaling relationship between
parameters in the mass action kinetics and
parameters in the full CME model
The scaling of parameters depends on the order of the reac-

tions. The mapping from the defined mass action rates to

the rates in the full CME simulations are:

zeroth-order reactions: bf
Z ! Vbf

Z, bb
Z ! Vbb

Z, ðA 1aÞ
first-order reactions: dZ ! dZ, uZ ! uZ ðA 1bÞ

and

second-order reactions: a! a

V
, kZ !

kZ

V
, ðA 1cÞ

with Z [ fX, Yg.
Appendix B. Measuring the periods
of stochastic cycles
In the marginal space describing the genetic state (sZ), the regu-

latory protein dynamic of sZ ¼ 0 is significantly different from

the other states (sZ . 0). This is because we defined the

transcription rate of the regulated gene Z to be 1fsZ. 0gb
b
Z þ

1fsZ¼ 0gb
f
Z. Therefore, we record the times at which each tran-

sition sZ ¼ 0! 1 occurs, and we define the elapsed time

between two consecutive transitions as the period of the sto-

chastic cycle. We measured 105 periods for each model and

compared their probability distributions in figure 2e.
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Appendix C. A kinetic Monte Carlo scheme to
generate sample paths of nonlinear PDMPs
When the deterministic part of the PDMP has an analytical

solution, Bokes et al. prescribed a simple algorithm to gener-

ate the exact random switching times [59]. We used the Bokes

algorithm for our linearized PDMP, which has an analytical

solution for the deterministic part. The two-dimensional

deterministic system of the full PDMP is governed by a set

of nonlinear equations where the nonlinearity comes from

the term describing heterodimer formation, axy. As the

exact solution is unknown, we used the following numerical

scheme to generate exact sample paths that respect the wait-

ing times before the next switching events. In our idealized

model of the ATC or RTC, there is only one gene whose

promoter states can switch. Our algorithm below generates

sample paths for this specific type of network with one pro-

moter sZ, but it can be generalized to more complex, multiple

switching genes.

(1) Initiation. Initiate the state variable (x, y, sZ). Here (x, y)

are the population density of the TFs, and sZ is the

discrete promoter state; in ATC, sZ ¼ sY and in RTC,

sZ ¼ sX. Initiate a ‘time of last switching’ t0  0.

(2) Generate dissociation time. When sZ . 0, the bound X can

dissociate from the promoter sites. The exponentially

distributed waiting time is generated by assigning

Tdiss  � log u=u, with u � Unif(0, 1). When sZ ¼ 0,

assign Tdiss  1.

(3) Generate a random number to determine the next binding
event. When sZ is less than the maximum capacity of pro-

moter sites (ATC: N Y; RTC: N X), it is possible to have a

binding event in the future. Generate a u1 � Unif(0, 1) for

future use. When s is equal to the maximum capacity of

the promoter sites, we set u1  �1.

(4) Forward integrate the system. Advance the time by a small

dt� 1 to forward integrate the ODEs numerically;

update the state (x, y). We implement the integrator

using the Runge–Kutta method.

(5) Check if a binding or dissociation event occurs. If the time

t . Tdiss, there was a dissociation event that occurred in

the past time step. Update the genetic state sZ  sZ � 1.

On the other hand, the probability that the system has

not bound another TF molecule is

P{Tbinding . t} ¼ exp �
ðt

t0

kZx(t0) dt0
� �

: ðC 1Þ

We compute this quantity, noting that this can be

summed up for each of the time steps dt numerically. If

P{Tbinding . t} , u1, we know by the inverse transform

sampling that a binding event occurred in the past time

step, so assign sZ  sZ þ 1 accordingly.

(6) Repeat. If there was a change in the promoter state sZ,

then repeat from 2 and register a new t0; otherwise,

repeat from 4, until the end of the simulation.

We remark that if the dynamics are linear and solvable, one

can analytically compute the survival function equation (C 1)

and derive a more efficient continuous-time sampling techni-

que [59]. In the VKBL model, the above algorithm is

generalized to the two genetic states (GA, GR). We note

that there are four distinct genetic states c1 :¼ (0, 0), c2 :¼ (1, 0),

c3 :¼ (0, 1) and c4 :¼ (1, 1), and the possible transitions are
c1 N c2 N c4 N c3 N c1. Therefore, when the genetic state is

in c1, we derive two survival functions and use them to perform

inverse sampling which generates a first binding event. Simi-

larly, when the genetic state is in c4, two exponentially

distributed dissociation times are to be sampled to determine

the first dissociation event. As for genetic states c2 and c3, they

can either transit to c1 (by a dissociating event of the bound

TF) or c4 (by a binding event between the free promoter and a

free TF). The random times are sampled similar to the above

steps 2–5.
Appendix D. PDMP of idealized ATC and RTC
Like all random processes, there are two representations

for a general PDMP (linear or nonlinear; see below). The

forward Chapman–Kolmogorov equation (2.8) of the joint

probability density is a set of linear partial differential

equations of the form

@

@t
P ¼ M̂P, ðD 1Þ

where P is a vector of joint probability density and M̂ is the

transition operator.

An equivalent representation of the PDMP is to describe

the evolution of the sample paths. In this representation,

the PDMP is a process described by ODEs with randomly

switching parameters. Using this approach, the PDMP of

the ATC is

_x ¼ bX � dXx� axy,

_y ¼ 1{sY¼0}b
f
Y þ 1{sY.0}b

b
Y � dYy� axy,

sY�!
xkY sY þ 1, if 0 � sY � N Y � 1

and sY�!
uY sY � 1, if 1 � sY � N Y:

9>>>>>>>=
>>>>>>>;

ðD 2Þ

and the PDMP of the RTC is

_y ¼ bY � dYy� axy,

_x ¼ 1{sX¼0}b
f
X þ 1{sX.0}b

b
X � dXx� axy,

sX�!
xkX sX þ 1, if 0 � sX � N X � 1

and sX�!
uX sX � 1, if 1 � sX � N X:

9>>>>>>>=
>>>>>>>;

ðD 3Þ

where N Z is the number of promoter states.
Appendix E. Linear PDMP of the KB model
We performed the following model reduction for the non-

linear PDMP in equation (3.1) by imposing the following

assumptions based on the parameters used in [15]:
E.1. Irreversible heterodimerization
The heterodimerization is much larger than the reverse rate,

and we approximate it as an irreversible process. Thus, [AI]
is ignored.

E.2. Fast homodimerization and dissociation
The homodimerization and dissociation occurs at a much

faster timescale than other processes, so the concentrations

of [A] and [A2] satisfy the quasi-stationary approximation—

g[A]2 	 e1[A2]—at any given time. For simplicity, we define
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[A] :¼ [A]þ 2[A2] as the total number of activators in

monomeric and dimeric form.

E.3. Linearization
We assume that, at any given time, either activators or inhibi-

tors are dominant such that the other becomes a limiting

factor. This is the approximation we proposed in §2.8 for

the idealized model. After this linearization, the dynamics

of [rA], [rI], [A] and [I ] are all analytically tractable. In the

long run, [rA]! r0=dm, and [rI] relax exponentially to the

fixed points rf/dm and rb/dm when G ¼ 0 and G . 0, respect-

ively. The activation rate of the linearized PDMP is

proportional to the concentration of the dimeric activators
A2, which can be solved by equating

[A] ¼ [A]þ 2[A2] ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1

g
[A2]

r
þ 2[A2], ðE 1Þ

using the adiabatic approximation g[A]2 ¼ e1[A2] in the last

step. The survival function of the waiting time of the next

binding event can be formulated as follows: let the random

time to the next binding event be t,

P{t . tjG(t0) ¼ G0} ¼ e
�a(Gmax�G0)

Ð t

t0
[A2](t0) dt0

: ðE 2Þ

The survival function is then used to generate the stochastic

waiting time to the next binding event using the inverse

transform sampling method.
.Interface
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